Difference between revisions of "Creating and building example Vivado project (BELK/BXELK)"

From DAVE Developer's Wiki
Jump to: navigation, search
(Creating and building a Zynq project for BORA/BORAX using the command line)
(Helloworld from UART0)
 
(56 intermediate revisions by 5 users not shown)
Line 2: Line 2:
 
{{Applies To Bora}}
 
{{Applies To Bora}}
 
{{Applies To BoraX}}
 
{{Applies To BoraX}}
 +
{{Applies To BoraLite}}
 
{{InfoBoxBottom}}
 
{{InfoBoxBottom}}
 +
 +
{{ImportantMessage|text=In this document, the Vivado installation path may be indicated as <code>vivado_201x.y</code>. Just replace <code>x</code> and <code>y</code> with the actual numbers of your version. For instance, use the string <code>vivado_2014.4</code> if you are working with Vivado 2014.4.
 +
}}
 +
  
 
== History ==
 
== History ==
Line 8: Line 13:
 
!Version
 
!Version
 
!Date
 
!Date
!BELK version
+
!BELK/BXELK version
 
!Notes
 
!Notes
 
|-
 
|-
Line 15: Line 20:
 
|[[Bora_Embedded_Linux_Kit_(BELK)#BELK_software_components|3.0.0]]
 
|[[Bora_Embedded_Linux_Kit_(BELK)#BELK_software_components|3.0.0]]
 
|First release
 
|First release
 +
|-
 +
|2.0.0
 +
|July 2017
 +
|[[Bora_Embedded_Linux_Kit_(BELK)#BELK_software_components|3.0.0, 4.0.0]]
 +
|Updates for BELK 4.0.0 / BXELK 2.0.0
 +
|-
 +
|{{oldid|9008|2.0.1}}
 +
|September 2019
 +
|[[Bora_Embedded_Linux_Kit_(BELK)#BELK_software_components|3.0.0, 4.0.0]]
 +
|Clarified U-Boot rebuild requirement<br>
 +
Added ''Downloading the bitstream to the device'' section
 +
|-
 +
|3.0.0
 +
|December 2019
 +
|[[Bora_Embedded_Linux_Kit_(BELK)#BELK_software_components|4.1.0, 2.1.0]]
 +
|
 
|-
 
|-
 
|}
 
|}
  
==Command line based procedure==
+
<section begin=BELK/>
It is assumed that the development environment has been set up properly as described [[Build_system_(BELK)|here]].
+
==Creating and building example Vivado project==
 +
BELK/BXELK provides an example Vivado project for BORA/BORAX/BORALITE boards. This project allows to:
 +
*generate the PS configuration files to be used with U-boot SPL build
 +
*generate the bitstream of a simple PL design used to route PS' CAN0 and UART0 signals through EMIO (see also the following pictures).
 +
 
 +
 
 +
[[File:Belk-default-vivado-project.png|thumb|center|400px|Block diagram of BORA example project]]
 +
[[File:Belk-borax-default-vivado-project.png|thumb|center|400px|Block diagram of BORAX example project]]
 +
[[File:Boralite-default-vivado-project.png|thumb|center|400px|Block diagram of BORALITE example project]]
 +
 
 +
This article describes how two build this project. Two procedures are described, the former is command line based while the latter is GUI based.
 +
 
 +
The project is stored is a git repository, as described [[BORA_SOM/BELK-L/Development/Build_system#Setting_up_the_Zynq_development_server_environment|here]].
 +
 
 +
It is assumed that the Zynq development environment has been set up properly (see [[BORA_SOM/BELK-L/Development/Build_system|this page]] for more details).
 +
 
 +
===Command line based procedure===
 +
{{ImportantMessage|text=The following procedure make use of ambient variables to address all our boards.<br>
 +
Define the correct ones according the target SoM.<br>
 +
For Bora SoM use:
 +
*<code>export BASE_NAME=bora</code>
 +
*<code>export UBOOT_PS7_DIR=bora</code>
 +
For BoraLite SoM use:
 +
*<code>export BASE_NAME=boralite</code>
 +
*<code>export UBOOT_PS7_DIR=bora</code>
 +
For BoraX SoM use:
 +
*<code>export BASE_NAME=borax</code>
 +
*<code>export UBOOT_PS7_DIR=borax</code>
 +
}}
 +
 
  
 
*start the Zynq development server and login into the system
 
*start the Zynq development server and login into the system
 
*assuming that a local repository has not been created, clone the remote BORA git repository:
 
*assuming that a local repository has not been created, clone the remote BORA git repository:
 
*:<code>git clone git@git.dave.eu:dave/bora/bora.git</code>
 
*:<code>git clone git@git.dave.eu:dave/bora/bora.git</code>
*copy the <code><bora_repo>/boards/board_parts/zynq/BELK_2.2.0</code> directory to <code><vivado_2014.4_install_dir>/data/boards/board_parts/zynq/</code> :
+
*copy the <code><bora_repo>/boards/</code> directory to <code><vivado_install_dir>/data/boards/</code>  
 
<pre>
 
<pre>
 
cd <bora_repo>
 
cd <bora_repo>
sudo cp -r boards/board_parts/zynq/BELK_2.2.0 /opt/Xilinx/Vivado/2014.4/data/boards/board_parts/zynq/
+
sudo cp -r boards/ /opt/Xilinx/Vivado/<Vivado_version>/data/
 
</pre>
 
</pre>
*enter the git directory and launch the following command
+
*launch the Vivado Design Suite with the following commands{{efn|In a 32 bit system, Vivado settings are configured with the following command <code>/opt/Xilinx/Vivado/<Vivado_version>/settings32.sh</code>}}{{efn|Passing the -tclargs "gen_bitstream" parameters allows for automatic building of the FPGA bitstream.}}:
*:<code>export PROJ_DIR=$(pwd)/../bora-build-YYYYMMDD-nobk</code>
 
*launch the Vivado Design Suite with the following commands{{efn|In a 32 bit system, Vivado settings are configured with the following command <code>/opt/Xilinx/Vivado/2014.4/settings32.sh</code>}}:
 
 
<pre>
 
<pre>
. /opt/Xilinx/Vivado/2014.4/settings64.sh1
+
. /opt/Xilinx/Vivado/<Vivado_version>/settings64.sh
vivado -mode tcl -source build_project.tcl -notrace -tclargs "-bitstream"
+
vivado -mode tcl -source scripts/recreate_prj_${BASE_NAME}_BASE.tcl -notrace -tclargs "gen_bitstream"
 
</pre>
 
</pre>
*at the end of the bitstream build process, the <code>build_project</code> script allows to automatically export hardware and lauch SDK to build the FSBL
+
*At the end of the bitstream build process, the <code>build_prj_*</code> script allows to automatically export hardware and lauch SDK.
*once the Xilinx SDK is ready, perform the following operations from the GUI:
+
*The bitstream file is now present in <code><bora_repo>/vivado/${BASE_NAME}.runs/impl_1/${BASE_NAME}_wrapper.bit</code> and <code><bora_repo>/vivado/${BASE_NAME}.runs/impl_1/${BASE_NAME}_wrapper.bin</code>.
**Click on ''File -> New -> Application Project''
+
*By default FSBL is not used anymore in the boot process. U-Boot SPL (first-stage bootloader) is used instead. PS configuration files are used to build U-boot binaries.
**Select the Project Name: ''bora_FSBL''
+
**Copy the <code>ps7_init_gpl.c</code> and <code>ps7_init_gpl.h</code> source files into U-boot source code directory using the following command example for Bora:
**Click ''Next''
+
:<code>cp <bora_repo>/bd/${BASE_NAME}/ip/${BASE_NAME}_processing_system7_0_0/ps7_init_gpl.* <U-boot_src_dir>/board/dave/bora/${UBOOT_PS7_DIR}/</code>
**Select ''Template: Zynq FSBL''
+
:*Follow [[BORA_SOM/BELK-L/Development/Building_U-Boot | U-boot build instructions]] to build U-boot using new PS configurations. '''Please note that the U-Boot binary images released along with BELK/BXELK were already built upon the <code>ps7_init_gpl.c</code> and <code>ps7_init_gpl.h</code> source files generated by the Vivado project described in this article'''. As such, it is not generally required to rebuild U-Boot.
**Click on ''Finish''
+
:**The PS configurations are the same for Bora and BoraLite boards.
**Apply the patch, right-clicking on ''bora_FSBL'' in Project Explorer and then by clicking on ''Team -> Apply Patch..''
 
**From ''Browse...'' open the file <code><bora_repo>/patch/belk-sd-boot.patch</code>
 
**Click ''Next''
 
**Select ''Apply the patch to the selected file, folder or project:'' and select <code>main.c</code> from ''bora_FSBL -> src''
 
**Click ''Next''
 
**Check that the patch is correctly applied to the source code and click on ''Finish''
 
*the FSBL (ELF file) is built automatically
 
*create the binary from the FSBL ELF chosing one of the following options:
 
**launch this command manually
 
<pre>arm-xilinx-eabi-objcopy -v -O binary $PROJ_DIR/bora.sdk/SDK/SDK_Export/bora_FSBL/Debug/bora_FSBL.elf $PROJ_DIR/bora.sdk/SDK/SDK_Export/bora_FSBL/Debug/bora_FSBL.bin</pre>
 
**configure the automatic binary generation on project build. In Project Explorer, right-click on ''bora_FSBL'' project, select C/C++ Build Settings and add the command <code>arm-xilinx-eabi-objcopy -v -O binary ${ProjName}.elf ${ProjName}.bin</code> on Post-build steps
 
*create the <code>BOOT.bin</code> image (single file including FSBL, FPGA and U-boot for uSD boot:
 
**select the ''bora_FSBL project'' in ''Project Explorer''
 
**click on ''Xilinx Tools -> Create Zynq Boot Image''
 
*if the project is correctly configured, the tool builds automatically all the component listed in the form, so just add U-Boot to the list
 
*otherwise, select Create new BIF file and set the output path and in Boot image partitions add the following files:
 
**<code>bora_FSBL.elf</code>, which can be found in the project Debug directory. N.B. check that the <u>Partition Type for FSBL is bootloader</u>
 
**<code>bora_wrapper.bit</code>, which is the bitstream generated by the Vivado project (<u>Partition Type must be Datafile</u>)
 
**<code>u-boot.elf</code>, which is the compiled U-Boot with .elf extension (<u>Partition Type must be Datafile</u>)
 
*in ''Output path'', select the path for the <u>BOOT.bin</u> file.
 
  
==Creating and building a Zynq project for BORA/BORAX using the Vivado GUI==
+
===GUI based procedure===
start the Zynq development server and login into the system
+
{{ImportantMessage|text=The following procedure make use of ambient variables to address all our boards.<br>
assuming that a local repository has not been created, clone the remote BORA git repository:
+
Define the correct ones according the target SoM.<br>
git clone git@git.dave.eu:dave/bora/bora.git
+
For Bora SoM use:
copy the <bora_repo>/boards/board_parts/zynq/BELK_2.2.0 directory to <vivado_2014.4_install_dir>/data/boards/board_parts/zynq/ :
+
*<code>export BORA_SOM=Bora</code>
 +
*<code>export BASE_NAME=bora</code>
 +
*<code>export UBOOT_PS7_DIR=bora</code>
 +
For BoraLite SoM use:
 +
*<code>export BORA_SOM=BoraLite</code>
 +
*<code>export BASE_NAME=boralite</code>
 +
*<code>export UBOOT_PS7_DIR=bora</code>
 +
For BoraX SoM use:
 +
*<code>export BORA_SOM=BoraX</code>
 +
*<code>export BASE_NAME=borax</code>
 +
*<code>export UBOOT_PS7_DIR=borax</code>
 +
}}
 +
 
 +
 
 +
*start the Zynq development server and login into the system
 +
*assuming that a local repository has not been created, clone the remote BORA git repository:<code>git clone git@git.dave.eu:dave/bora/bora.git</code>
 +
 
 +
*copy the <code><bora_repo>/boards/</code> directory to <code><vivado_install_dir>/data/boards/</code> :
 +
<pre>
 
cd <bora_repo>
 
cd <bora_repo>
sudo cp -r boards/board_parts/zynq/BELK_2.2.0 /opt/Xilinx/Vivado/2014.4/data/boards/board_parts/zynq/
+
sudo cp -r boards/ /opt/Xilinx/Vivado/<Vivado_version>/data/
launch Vivado v2014.4 and from the start page click on Create New Project
+
</pre>
click Next
+
*launch the Vivado Design Suite GUI with the following commands{{efn|In a 32 bit system, Vivado settings are configured with the following command <code>/opt/Xilinx/Vivado/201x.y/settings32.sh</code>}}:
select the directory build project, insert the name of the project Project Name and click Next
+
<pre>
select RTL Project, enable Do not specify sources at this time and click Next
+
. /opt/Xilinx/Vivado/201x.y/settings64.sh
on the Default Part form, click on the Boards button to filter the available boards. Select BELK 2.2.0 and click Next
+
vivado
check the summary page and click Finish
+
</pre>
in the Vivado GUI click on Create Block Design from the Flow Navigator
+
*from the start page click on ''Create New Project''
insert bora as Design name and click OK
+
*click ''Next''
this creates a new block design. From the Diagram tab, add a new IP:
+
*select the directory build project, insert the name of the project ''<prj_name>'' and click ''Next''
click the Add IP side button, or
+
*select ''RTL Project'', enable ''Do not specify sources at this time'' and click ''Next''
click Add IP on the upper suggestions bar
+
*on the ''Default Part'' form, click on the ''Boards'' button to filter the available boards. Select ''${BORA_SOM}'' and click ''Next''
double click on ZYNQ7 Processing System
+
*check the summary page and click ''Finish''
this adds the IP that models the PL component of Zynq. Launch Run Block Automation from the upper suggestions bar
+
*For the block design there are two possible ways:
check that Apply Board Preset is selected and click OK
+
**Add the existing BD within the repo:
this applies the default settings for BORA and creates the I/O ports for the DDR and MIO pins and for the UART_0 and CAN_0 interfaces
+
***select ''Add sources''  from the ''Flow Navigator''
manually connect the FCLK_CLK0 signal to M_AXI_GP0_ACLK and save the block design
+
***click on ''Add or create design sources''
from the sources tab, select the BORA block design (bora.bd) as Design Sources and from the context menu select Create HDL Wrapper
+
***select Add Files and add <code><bora_repo>/bd/${BASE_NAME}/${BASE_NAME}.bd</code>
on the next window, select Copy generated wrapper to allow user edits and click OK
+
***check that the option ''Copy sources into project'' is disabled and click finish
this creates the Verilog bora_wrapper.v file. If this file is not automatically included in the project, add it using the Add sources option
+
**Create a new block design:
select Add or create design sources and click Next
+
***click on ''Create Block Design'' from the ''Flow Navigator''
select the bora_wrapper.v file from the <prj_name>.srcs/sources_1/bd/bora/hdl/ directory
+
***insert ''${BASE_NAME}'' as ''Design name'' and click ''OK''
select Add sources and click on Add or create constraints
+
***this creates a new block design. From the Diagram tab, add a new IP:
select the bora_pinout.xdc and bora_timings.xdc files from the constr directory of the BORA repository
+
****click the ''Add IP'' side button, or
check that the option Copy constraints files into project is enabled
+
****click ''Add IP'' on the upper suggestions bar
create the synthesis, implementation and bitstream clicking Generate Bitstream from the Flow Navigator and wait the completion of the operation
+
***double click on ''ZYNQ7 Processing System''
once completed, select Open Implemented Design
+
***this adds the IP that models the PL component of Zynq. Launch ''Run Block Automation'' from the upper suggestions bar
create the binary bitstream running the tcl script provided with the BORA repository. Launch Tools -> Run Tcl Script
+
***check that ''Apply Board Preset'' is selected and click ''OK''
select the generate_binary_bitstream.tcl file from the scripts directory from the BORA repository
+
****this applies the default settings for BORA/BORAX and creates the I/O ports for the DDR and MIO pins
select File -> Export -> Export Hardware
+
***UART_0 and CAN_0 connections must be manually created:
on the next window, enable Include Bitstream and click OK
+
****right-clicking on each port (where mouse cursor switch to ''pencil'') and selecting ''Make External'' or with keyboard shortcut <code>Ctrl+T</code>. The name of the external ports must be UART_0 and CAN_0 respectively, otherwise correct manually
now launch the SDK session to generate the FSBL, clicking on File -> Launch SDK
+
***manually connect the <code>FCLK_CLK0</code> signal to <code>M_AXI_GP0_ACLK</code> and save the block design
once the Xilinx SDK is ready, perform the following operations from the GUI:
+
***from the sources tab, select the BORA block design <code>${BASE_NAME}.bd</code> as ''Design Sources'' and from the context menu select ''Create HDL Wrapper''
Click on File -> New -> Application Project
+
***on the next window, select ''Let Vivado menage wrapper and auto-update'' and click ''OK''
Select the Project Name: bora_FSBL
+
***this creates the Verilog file <code>${BASE_NAME}_wrapper.v</code>. If this file is not automatically included in the project, add it using the ''Add sources'' option
Click Next
+
****select Add or create design sources and click ''Next''
Select Template: Zynq FSBL
+
****select the <code>>${BASE_NAME}_wrapper.v</code> file from the <code><project_directory>/<prj_name>.srcs/sources_1/bd/${BASE_NAME}/hdl/</code> directory
Click on Finish
+
 
Apply the patch, right-clicking on bora_FSBL in Project Explorer and then clicking on Team -> Apply Patch..
+
*select ''Add sources'' and click on ''Add or create constraints''
From Browse... open the file <bora_repo>/patch/belk-sd-boot.patch
+
*select the <code>${BASE_NAME}_pinout.xdc</code> and <code>${BASE_NAME}_timings.xdc</code> files from the <code>constr</code> directory of the BORA repository
Click Next
+
*check that the option ''Copy constraints'' ''files into project'' is disabled and click finish
Select Apply the patch to the selected file, folder or project: and select main.c from bora_FSBL -> src
+
*create the synthesis, implementation and bitstream clicking ''Generate Bitstream'' from the ''Flow Navigator'' and wait the completion of the operation
Click Next
+
*once completed, select ''Open Implemented Design''
Check that the patch is correctly applied to the source code and click on Finish
+
*create the binary bitstream running the tcl script provided with the BORA repository. Launch ''Tools -> Run Tcl Script''
the FSBL (ELF file) is built automatically
+
*select the <code>generate_binary_bitstream.tcl</code> file from the <code>scripts</code> directory from the BORA repository
create the binary from the FSBL ELF chosing one of the following options:
+
*The bitstream file is now present in <code><project_directory>/<prj_name>.runs/impl_1/${BASE_NAME}_wrapper.bit</code> and <code><project_directory>/<prj_name>.runs/impl_1/${BASE_NAME}_wrapper.bin</code>.
manually launch the command: arm-xilinx-eabi-objcopy -v -O binary $PROJ_DIR/bora.sdk/SDK/SDK_Export/bora_FSBL/Debug/bora_FSBL.elf $PROJ_DIR/bora.sdk/SDK/SDK_Export/bora_FSBL/Debug/bora_FSBL.bin
+
*Copy the <code>ps7_init_gpl.c</code> and <code>ps7_init_gpl.h</code> source files into U-boot source code directory using the following command example for Bora:
configure the automatic binary generation on project build. In Project Explorer, right-click on “bora_FSBL” project and select C/C++ Build Settings and add the command arm-xilinx-eabi-objcopy -v -O binary ${ProjName}.elf ${ProjName}.bin on Post-build steps
+
:<code>cp <project_directory>/<prj_name>.srcs/sources_1/bd/${BASE_NAME}/ip/<prj_name>_processing_system7_0_0/ps7_init_gpl.* <U-boot_src_dir>/board/dave/bora/${UBOOT_PS7_DIR}/</code>Follow [[BORA_SOM/BELK-L/Development/Building_U-Boot | U-boot build instructions]] to build U-boot using new PS configurations. '''Please note that the U-Boot binary images released along with BELK/BXELK were already built upon the <code>ps7_init_gpl.c</code> and <code>ps7_init_gpl.h</code> source files generated by the Vivado project described in this article'''. As such, it is not generally required to rebuild U-Boot.
create the BOOT.bin image (single file including FSBL, FPGA and U-boot for uSD boot:
+
-----
select the bora_FSBL project in Project Explorer
+
{{notelist}}
click on Xilinx Tools -> Create Zynq Boot Image
+
 
if the project is correctly configured, the tool builds automatically all the component listed in the form, so just add U-Boot to the list.
+
=== Downloading the bitstream to the device ===
otherwise, select Create new BIF file and set the output path and in Boot image partitions add the following files:
+
Once the bitstream is ready, U-Boot itself can be used to download it onto the device. There are other options, however. For more details, please refer to [[BELK-AN-008:_Programming_the_FPGA_Bitstream_with_U-Boot#Introduction|this section]].
bora_FSBL.elf, which can be found in the project Debug directory. N.B. check that the Partition Type for FSBL is bootloader
+
 
bora_wrapper.bit, which is the bitstream generated by the Vivado project (Partition Type must be Datafile)
+
=== Helloworld from UART0 ===
u-boot.elf, which is the compiled U-Boot with .elf extension (Partition Type must be Datafile)
+
Using the FPGA bitstream previously created, it is possible to use serial tty port on Linux. The serial port is mapped to <code>/dev/ttyPS1</code> (this is because <code>/dev/ttyPS0</code> is the console mapped to UART1).
in Output path, select the path for the BOOT.bin file
+
 
 +
Here below an example on C code for initializing and using UART0 through FPGA:
 +
 
 +
<pre>
 +
#include <stdio.h>
 +
#include <stdlib.h>
 +
#include <string.h>
 +
#include <errno.h>
 +
#include <fcntl.h>
 +
#include <termios.h>
 +
 
 +
int set_interface_attribs (int fd, int speed, int parity)
 +
{
 +
        struct termios tty;
 +
        memset (&tty, 0, sizeof tty);
 +
        if (tcgetattr (fd, &tty) != 0)
 +
        {
 +
                printf("error %d from tcgetattr", errno);
 +
                return -1;
 +
        }
 +
 
 +
        cfsetospeed (&tty, speed);
 +
        cfsetispeed (&tty, speed);
 +
 
 +
        tty.c_cflag = (tty.c_cflag & ~CSIZE) | CS8;    // 8-bit chars
 +
        // disable IGNBRK for mismatched speed tests; otherwise receive break
 +
        // as \000 chars
 +
        tty.c_iflag &= ~IGNBRK;        // disable break processing
 +
        tty.c_lflag = 0;                // no signaling chars, no echo,
 +
                                        // no canonical processing
 +
        tty.c_oflag = 0;                // no remapping, no delays
 +
        tty.c_cc[VMIN]  = 0;            // read doesn't block
 +
        tty.c_cc[VTIME] = 5;            // 0.5 seconds read timeout
 +
 
 +
        tty.c_iflag &= ~(IXON | IXOFF | IXANY); // shut off xon/xoff ctrl
 +
 
 +
        tty.c_cflag |= (CLOCAL | CREAD);// ignore modem controls,
 +
                                        // enable reading
 +
        tty.c_cflag &= ~(PARENB | PARODD);      // shut off parity
 +
        tty.c_cflag |= parity;
 +
        tty.c_cflag &= ~CSTOPB;
 +
        tty.c_cflag &= ~CRTSCTS;
 +
 
 +
        if (tcsetattr (fd, TCSANOW, &tty) != 0)
 +
        {
 +
                printf("error %d from tcsetattr", errno);
 +
                return -1;
 +
        }
 +
        return 0;
 +
}
 +
 
 +
 
 +
int main()
 +
{
 +
int fd;
 +
char *portname = "/dev/ttyPS1";
 +
 
 +
char msg[] = "Hello World from BELK (FPGA PS0 UART)!\n\r";
 +
 
 +
fd = open(portname, O_RDWR | O_NOCTTY | O_SYNC);
 +
if (fd < 0)
 +
{
 +
        printf("error %d opening %s: %s", errno, portname, strerror (errno));
 +
        exit(1);
 +
}
 +
printf(msg);
 +
 
 +
set_interface_attribs (fd, B115200, 0);  // set speed to 115,200 bps, 8n1 (no parity)
 +
write(fd, msg, strlen(msg));
 +
 
 +
exit(0);
 +
}
 +
 
 +
 
 +
</pre>
 +
 
 +
and then compile it:
 +
 
 +
<pre>
 +
dvdk@vagrant:~/bora/rfs/belk/home/root$ source ~/env.sh
 +
dvdk@vagrant:~/bora/rfs/belk/home/root$ $CC hello_UART0.c -o hello_UART0
 +
</pre>
 +
 
 +
The program executed print out the msg string on the serial console and on <code>/dev/ttyPS1</code> port.
 +
<section end=BELK/>

Latest revision as of 13:22, 12 May 2022

Info Box
Bora5-small.jpg Applies to Bora
BORA Xpress.png Applies to BORA Xpress
BORALite-TOP.png Applies to BORA Lite


200px-Emblem-important.svg.png

In this document, the Vivado installation path may be indicated as vivado_201x.y. Just replace x and y with the actual numbers of your version. For instance, use the string vivado_2014.4 if you are working with Vivado 2014.4.


History[edit | edit source]

Version Date BELK/BXELK version Notes
1.0.0 November 2015 3.0.0 First release
2.0.0 July 2017 3.0.0, 4.0.0 Updates for BELK 4.0.0 / BXELK 2.0.0

2.0.1

September 2019 3.0.0, 4.0.0 Clarified U-Boot rebuild requirement

Added Downloading the bitstream to the device section

3.0.0 December 2019 4.1.0, 2.1.0


Creating and building example Vivado project[edit | edit source]

BELK/BXELK provides an example Vivado project for BORA/BORAX/BORALITE boards. This project allows to:

  • generate the PS configuration files to be used with U-boot SPL build
  • generate the bitstream of a simple PL design used to route PS' CAN0 and UART0 signals through EMIO (see also the following pictures).


Block diagram of BORA example project
Block diagram of BORAX example project
Block diagram of BORALITE example project

This article describes how two build this project. Two procedures are described, the former is command line based while the latter is GUI based.

The project is stored is a git repository, as described here.

It is assumed that the Zynq development environment has been set up properly (see this page for more details).

Command line based procedure[edit | edit source]

200px-Emblem-important.svg.png

The following procedure make use of ambient variables to address all our boards.
Define the correct ones according the target SoM.
For Bora SoM use:

  • export BASE_NAME=bora
  • export UBOOT_PS7_DIR=bora

For BoraLite SoM use:

  • export BASE_NAME=boralite
  • export UBOOT_PS7_DIR=bora

For BoraX SoM use:

  • export BASE_NAME=borax
  • export UBOOT_PS7_DIR=borax


  • start the Zynq development server and login into the system
  • assuming that a local repository has not been created, clone the remote BORA git repository:
    git clone git@git.dave.eu:dave/bora/bora.git
  • copy the <bora_repo>/boards/ directory to <vivado_install_dir>/data/boards/
cd <bora_repo>
sudo cp -r boards/ /opt/Xilinx/Vivado/<Vivado_version>/data/
  • launch the Vivado Design Suite with the following commands[a][b]:
. /opt/Xilinx/Vivado/<Vivado_version>/settings64.sh
vivado -mode tcl -source scripts/recreate_prj_${BASE_NAME}_BASE.tcl -notrace -tclargs "gen_bitstream"
  • At the end of the bitstream build process, the build_prj_* script allows to automatically export hardware and lauch SDK.
  • The bitstream file is now present in <bora_repo>/vivado/${BASE_NAME}.runs/impl_1/${BASE_NAME}_wrapper.bit and <bora_repo>/vivado/${BASE_NAME}.runs/impl_1/${BASE_NAME}_wrapper.bin.
  • By default FSBL is not used anymore in the boot process. U-Boot SPL (first-stage bootloader) is used instead. PS configuration files are used to build U-boot binaries.
    • Copy the ps7_init_gpl.c and ps7_init_gpl.h source files into U-boot source code directory using the following command example for Bora:
cp <bora_repo>/bd/${BASE_NAME}/ip/${BASE_NAME}_processing_system7_0_0/ps7_init_gpl.* <U-boot_src_dir>/board/dave/bora/${UBOOT_PS7_DIR}/
  • Follow U-boot build instructions to build U-boot using new PS configurations. Please note that the U-Boot binary images released along with BELK/BXELK were already built upon the ps7_init_gpl.c and ps7_init_gpl.h source files generated by the Vivado project described in this article. As such, it is not generally required to rebuild U-Boot.
    • The PS configurations are the same for Bora and BoraLite boards.

GUI based procedure[edit | edit source]

200px-Emblem-important.svg.png

The following procedure make use of ambient variables to address all our boards.
Define the correct ones according the target SoM.
For Bora SoM use:

  • export BORA_SOM=Bora
  • export BASE_NAME=bora
  • export UBOOT_PS7_DIR=bora

For BoraLite SoM use:

  • export BORA_SOM=BoraLite
  • export BASE_NAME=boralite
  • export UBOOT_PS7_DIR=bora

For BoraX SoM use:

  • export BORA_SOM=BoraX
  • export BASE_NAME=borax
  • export UBOOT_PS7_DIR=borax


  • start the Zynq development server and login into the system
  • assuming that a local repository has not been created, clone the remote BORA git repository:git clone git@git.dave.eu:dave/bora/bora.git
  • copy the <bora_repo>/boards/ directory to <vivado_install_dir>/data/boards/ :
cd <bora_repo>
sudo cp -r boards/ /opt/Xilinx/Vivado/<Vivado_version>/data/
  • launch the Vivado Design Suite GUI with the following commands[c]:
. /opt/Xilinx/Vivado/201x.y/settings64.sh
vivado
  • from the start page click on Create New Project
  • click Next
  • select the directory build project, insert the name of the project <prj_name> and click Next
  • select RTL Project, enable Do not specify sources at this time and click Next
  • on the Default Part form, click on the Boards button to filter the available boards. Select ${BORA_SOM} and click Next
  • check the summary page and click Finish
  • For the block design there are two possible ways:
    • Add the existing BD within the repo:
      • select Add sources from the Flow Navigator
      • click on Add or create design sources
      • select Add Files and add <bora_repo>/bd/${BASE_NAME}/${BASE_NAME}.bd
      • check that the option Copy sources into project is disabled and click finish
    • Create a new block design:
      • click on Create Block Design from the Flow Navigator
      • insert ${BASE_NAME} as Design name and click OK
      • this creates a new block design. From the Diagram tab, add a new IP:
        • click the Add IP side button, or
        • click Add IP on the upper suggestions bar
      • double click on ZYNQ7 Processing System
      • this adds the IP that models the PL component of Zynq. Launch Run Block Automation from the upper suggestions bar
      • check that Apply Board Preset is selected and click OK
        • this applies the default settings for BORA/BORAX and creates the I/O ports for the DDR and MIO pins
      • UART_0 and CAN_0 connections must be manually created:
        • right-clicking on each port (where mouse cursor switch to pencil) and selecting Make External or with keyboard shortcut Ctrl+T. The name of the external ports must be UART_0 and CAN_0 respectively, otherwise correct manually
      • manually connect the FCLK_CLK0 signal to M_AXI_GP0_ACLK and save the block design
      • from the sources tab, select the BORA block design ${BASE_NAME}.bd as Design Sources and from the context menu select Create HDL Wrapper
      • on the next window, select Let Vivado menage wrapper and auto-update and click OK
      • this creates the Verilog file ${BASE_NAME}_wrapper.v. If this file is not automatically included in the project, add it using the Add sources option
        • select Add or create design sources and click Next
        • select the >${BASE_NAME}_wrapper.v file from the <project_directory>/<prj_name>.srcs/sources_1/bd/${BASE_NAME}/hdl/ directory
  • select Add sources and click on Add or create constraints
  • select the ${BASE_NAME}_pinout.xdc and ${BASE_NAME}_timings.xdc files from the constr directory of the BORA repository
  • check that the option Copy constraints files into project is disabled and click finish
  • create the synthesis, implementation and bitstream clicking Generate Bitstream from the Flow Navigator and wait the completion of the operation
  • once completed, select Open Implemented Design
  • create the binary bitstream running the tcl script provided with the BORA repository. Launch Tools -> Run Tcl Script
  • select the generate_binary_bitstream.tcl file from the scripts directory from the BORA repository
  • The bitstream file is now present in <project_directory>/<prj_name>.runs/impl_1/${BASE_NAME}_wrapper.bit and <project_directory>/<prj_name>.runs/impl_1/${BASE_NAME}_wrapper.bin.
  • Copy the ps7_init_gpl.c and ps7_init_gpl.h source files into U-boot source code directory using the following command example for Bora:
cp <project_directory>/<prj_name>.srcs/sources_1/bd/${BASE_NAME}/ip/<prj_name>_processing_system7_0_0/ps7_init_gpl.* <U-boot_src_dir>/board/dave/bora/${UBOOT_PS7_DIR}/Follow U-boot build instructions to build U-boot using new PS configurations. Please note that the U-Boot binary images released along with BELK/BXELK were already built upon the ps7_init_gpl.c and ps7_init_gpl.h source files generated by the Vivado project described in this article. As such, it is not generally required to rebuild U-Boot.

  1. In a 32 bit system, Vivado settings are configured with the following command /opt/Xilinx/Vivado/<Vivado_version>/settings32.sh
  2. Passing the -tclargs "gen_bitstream" parameters allows for automatic building of the FPGA bitstream.
  3. In a 32 bit system, Vivado settings are configured with the following command /opt/Xilinx/Vivado/201x.y/settings32.sh

Downloading the bitstream to the device[edit | edit source]

Once the bitstream is ready, U-Boot itself can be used to download it onto the device. There are other options, however. For more details, please refer to this section.

Helloworld from UART0[edit | edit source]

Using the FPGA bitstream previously created, it is possible to use serial tty port on Linux. The serial port is mapped to /dev/ttyPS1 (this is because /dev/ttyPS0 is the console mapped to UART1).

Here below an example on C code for initializing and using UART0 through FPGA:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <fcntl.h> 
#include <termios.h>

int set_interface_attribs (int fd, int speed, int parity)
{
        struct termios tty;
        memset (&tty, 0, sizeof tty);
        if (tcgetattr (fd, &tty) != 0)
        {
                printf("error %d from tcgetattr", errno);
                return -1;
        }

        cfsetospeed (&tty, speed);
        cfsetispeed (&tty, speed);

        tty.c_cflag = (tty.c_cflag & ~CSIZE) | CS8;     // 8-bit chars
        // disable IGNBRK for mismatched speed tests; otherwise receive break
        // as \000 chars
        tty.c_iflag &= ~IGNBRK;         // disable break processing
        tty.c_lflag = 0;                // no signaling chars, no echo,
                                        // no canonical processing
        tty.c_oflag = 0;                // no remapping, no delays
        tty.c_cc[VMIN]  = 0;            // read doesn't block
        tty.c_cc[VTIME] = 5;            // 0.5 seconds read timeout

        tty.c_iflag &= ~(IXON | IXOFF | IXANY); // shut off xon/xoff ctrl

        tty.c_cflag |= (CLOCAL | CREAD);// ignore modem controls,
                                        // enable reading
        tty.c_cflag &= ~(PARENB | PARODD);      // shut off parity
        tty.c_cflag |= parity;
        tty.c_cflag &= ~CSTOPB;
        tty.c_cflag &= ~CRTSCTS;

        if (tcsetattr (fd, TCSANOW, &tty) != 0)
        {
                printf("error %d from tcsetattr", errno);
                return -1;
        }
        return 0;
} 


int main()
{
	int fd;
	char *portname = "/dev/ttyPS1";

	char msg[] = "Hello World from BELK (FPGA PS0 UART)!\n\r";

	fd = open(portname, O_RDWR | O_NOCTTY | O_SYNC);
	if (fd < 0)
	{
        	printf("error %d opening %s: %s", errno, portname, strerror (errno));
	        exit(1);
	}
	printf(msg);

	set_interface_attribs (fd, B115200, 0);  // set speed to 115,200 bps, 8n1 (no parity)
	write(fd, msg, strlen(msg));

	exit(0);
}


and then compile it:

dvdk@vagrant:~/bora/rfs/belk/home/root$ source ~/env.sh 
dvdk@vagrant:~/bora/rfs/belk/home/root$ $CC hello_UART0.c -o hello_UART0

The program executed print out the msg string on the serial console and on /dev/ttyPS1 port.