Changes

Jump to: navigation, search

Power consumption (Bora)

296 bytes added, 08:26, 28 October 2021
no edit summary
{{Applies To Bora}}
{{InfoBoxBottom}}
 <section begin=Body/>=Introduction=Electrical Thermal management and heat dissipation==
Providing maximum power consumption of a system-on-module (SOM for short) is virtually impossible because it is extremely hard to define the worst case. This is even more true in case of Bora, where this is affected by the software running on Processing System (PS) side and the Programmable Logic (PL) configuration.
For this reason, several real use cases have been considered rather than indicating a theoretical maximum power consumption value that would be useless for the majority of system integrators, because it likely would lead to an oversized power supply unit.
Again, it is worth to remember remembering that Bora platform is so flexible that is practically impossible to test for all possible configurations and applications on the market. The use cases here presented should cover most of the real-world scenarios. However , actual customer application might require more power than values reported here. Generally speaking, application -specific requirements have to be taken into consideration in order to size the power supply unit and to implement thermal management properly.
The following sections describe in details detail the test beds testbeds that have been used. All of them make use of a specific FPGA bistream that has been developed to perform stress tests on Bora platforms [1]. These tests have been conducted in a climatic chamber that allows to set setting environment temperature surrounding DUT, denoted in the rest of the document as Tamb. Tj denotes Zynq's junction temperature instead.
FPGA bitstream - that in turn is built upon [http://opencores.org/project,highload this core] - allocates most of FPGA resources. All of them are clocked by one clock signal whose frequency is selectable by the PS at runtime. This allows to flexibly change DUT current absorption and, consequently, the heat it generates.
For information related to temperature measurements, see also [[Physical_devices_mapping_(BELK/BXELK)#Temperature_sensors|this section]].
[1] These tests are part of the standard qualification procedure of DAVE Embedded Systems products. Their primary goal is to verify proper operating of the DUT under conditions of usage that are extremely demanding. Data here reported have been excerpted from the logs generated by such tests.
[1] These tests are part of the standard qualification procedure of DAVE Embedded Systems products. Their primary goal is to verify the proper operating of the DUT under conditions of usage that are extremely demanding. Data reported here were excerpted from the logs generated by such tests. ===Configuration #1=======Testbed====
Measurements have been performed on the following platform:
* Bora SOM: DBRD5110I1R
**this model is based on Zynq XC7Z020-1I (Tj: '''-40°C / +100°C''')
* carrier board: [[BoraEVB]]
* processor frequency: '''667 MHz'''
* FPGA frequency
**30 MHz (Tamb = +85°C)
Please note that, when Tamb has been set to +85°C, the Bora SOM has been coupled to a passive heat sink to prevent exceeding maximum Zynq's junction temperature.
At the application level, PS executes concurrently several tasks including:
*two instances of [https://github.com/Explorer09/cpustress-sources/blob/master/cpuburn/cpuburn-1.4a/ARM/burnCortexA9.s <code>burnCortexA9</code>]
*periodic reading of I2C RTC (Maxim DS3232M)
*one instance of [http://pyropus.ca/software/memtester/ <code>memtester</code>], exercising 50 MByte of SDRAM
*endless loop of writing/reading/verifying operations on microSD card
*periodic reading of I2C remote temperature sensor (TExas Texas Instruments TMP421)*endless loop of writing/reading/verifying operations on memory stick connected to the USB port.====Results====
*Tamb: temperature of the ambient surrounding the DUT
*Tj_max: maximum Zynq's junction temperature measured during the test
|}
[1] In spite of the use of heat sink, this value exceeds maximum valued declared by the manufacturer. This is acceptable in case of stress tests, where it is possible that the parts of the DUT get damaged.
===Configuration #2=======Testbed====
Measurements have been performed on the following platform:
* Bora SOM: DBRF5110C1R
**this model is based on Zynq XC7Z020-3E (Tj: '''0 / +100°C''')
* carrier board: [[BoraEVB]]
* processor frequency: '''867 MHz'''
* FPGA frequency
**10 MHz (Tamb = +75°C)
*periodic reading of I2C remote temperature sensor (TExas Instruments TMP421)
*endless loop of writing/reading/verifying operations on memory stick connected to USB port.
====Results====
*Tamb: temperature of the ambient surrounding the DUT
*Tj_max: maximum Zynq's junction temperature measured during the test
|-
|}
===Configuration #3=======Testbed====
Measurements have been performed on the following platform:
* Bora SOM: DBRD4110Q2P-01
**this model is based on Zynq XQ7Z020-1Q (Tj: '''-40°C / +125°C''')
* carrier board: [[BoraEVB]]
* processor frequency: '''667 MHz'''
* FPGA frequency
**40 MHz (Tamb = +85°C)
Please note that, when Tamb has been set to +85°C, the Bora SOM has been coupled to a passive heat sink to prevent exceeding maximum Zynq's junction temperature.
At the application level, PS executes concurrently several tasks including:
*two instances of [https://github.com/Explorer09/cpustress-sources/blob/master/cpuburn/cpuburn-1.4a/ARM/burnCortexA9.s <code>burnCortexA9</code>]
*periodic reading of I2C RTC (Maxim DS3232M)
*one instance of [http://pyropus.ca/software/memtester/ <code>memtester</code>], exercising 50 MByte of SDRAM
*endless loop of writing/reading/verifying operations on microSD card
*periodic reading of I2C remote temperature sensor (TExas Texas Instruments TMP421)*endless loop of writing/reading/verifying operations on memory stick connected to the USB port
*endless loop of writing/reading/verifying operations on NAND flash memory.
===Results===
|}
[1] In spite of the use of heat sink, this value exceeds maximum valued declared by the manufacturer. This is acceptable in case of stress tests, where it is possible that the parts of the DUT get damaged. <section end=Body/>
8,183
edits

Navigation menu