Changes

Jump to: navigation, search
Heterogeneous asymmetric multi-processing
The core of the systems is the [[ORCA SOM|Orca SoM]], which in turn is built around the [https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-8-processors/i-mx-8m-plus-arm-cortex-a53-machine-learning-vision-multimedia-and-industrial-iot:IMX8MPLUS i.MX8M Plus] system-on-chip by NXP.
== Heterogeneous asymmetric multi-processing multiprocessing ==From the computational standpoint, there are two domains running two different operating systems. In this regard, the resulting architecture is an example of [https://en.wikipedia.org/wiki/Heterogeneous_computing heterogeneous ] [https://en.wikipedia.org/wiki/Asymmetric_multiprocessing asymmetric multi-processing multiprocessing] as it is based on different types of cores, namely the ARM Cortex-A53 and the ARM Cortex-M7.
The system architect chose this implementation because it is convenient to satisfy the diversified product's requirements. In particular, the DMX/RDM subsystem must meet real-time requirements in order to be compliant with the DMX/RDM standards. The DMX/RDM subsystem consists of the ARM Cortex-M7 core working in tandem with an FPGA. On the M7 core, a real-time operating system (FreeRTOS) runs. The application executed on top of the RTOS communicates with the Linux domain through RPMsg-Lite, a "lightweight implementation of the Remote Processor Messaging (RPMsg) protocol" according to [https://github.com/NXPmicro/rpmsg-lite NXP documentation]. On the other side, the M7 core is connected to an FPGA through an I2S bus. Even though this bus is conceived for digital audio streams, it fits very well for conveying the data to/from the DMX/RDM channels.
Such requirements would be hard to fulfill with Linux-only implementation.
4,650
edits

Navigation menu