BoraXEVB

From DAVE Developer's Wiki
Jump to: navigation, search
Info Box
BORA Xpress.png Applies to BORA Xpress


Warning-icon.png By default, BoraXEVB comes with a Zynq 7030-based SOM. However, it can host different models of BoraX SOM. From the point of view of PL's I/O voltage levels, different models may not be equivalent. Please refer to this section to avoid unsupported configurations that may damage the hardware permanently. Warning-icon.png

Contents

Introduction

BORA Xpress EVB is a carrier board designed to host BORA Xpress system-on-module.

BoraXEVB-01.png


Block Diagram

The following picture shows BORA Xpress EVB block diagram:

BoraXEVB simplified block diagram

Configurable routing options

FPGA banks #12, #34 and #35 supports different routing options as shown in the following picture.

For a detailed description of FMC connector routing, please refer to this section.

Configurable routing options diagram

Features

  • 10/100/1000 Ethernet #0 (PS)
  • 10/100/1000 Ethernet #1 (Routed through EMIO)
  • 1x USB 2.0 OTG (MicroAB connector)
  • 1x Serial port (RS232 DB9)
  • 1x MicroSD
  • 1x FPGA Mezzanine Card (FMC) Connector
  • XADC
    • Some signals of Bank 35 can be configured as XADC signals. For this reason they can be routed alternatively to 2.54mm-pitch connectors, instead of FMC connector.
  • State-of-the-art programmable MEMS clock generator (Silicon Labs Si504): this is an alternative clock source to allow the user to easily experiment his/her own peripherals and IPs on FPGA
  • JTAG port
  • Socket for DWM Wireless Module
  • Digilent Pmod™ Compatible expansion connectors
  • Headers for external for NAND flash and SPI NOR flash
  • 2.54mm-pitch pin-strip connectors for Bora Xpress PS and PL configurable peripherals (MIO and EMIO interfaces, GPIOs, custom IPs, ..)
  • Jumpers for voltage selection of the PL banks
  • +12V power connector

Known limitations

Board version CS040713A has the following limitations:

Issue Description
LCD_BKLT_PWM I/O voltage LCD_BKLT_PWM signal is derived from IO_0_13 on BANK13. In the case of LVDS signals for LCD the BANK 13 must be powered at 2.5V. So in this case LCD_BKLT_PWM is an LVCMOS 2.5V signal. It is recommended to place a voltage level translator to 3.3V if the signal voltages are not compatible with the LCD diplay backlight input.
FMC connector For the serial numbers included in the range EVBBX0000C0R00A0 - EVBBX0000C0R00AB, the connector that is actually mounted on the board is the LPC version, not the HPC version listed in the specifications.

Connectors pinout

J1,J2 and J3

The pinout of the J1, J2 and J3 connectors of the Bora Xpress EVB is the same of the counterpart connectors on BORA Xpress module.

Power supply - JP2

Power is provided through the JP2 connector.

JP2 connector is a standard 2.1mm/5.5mm DC power jack with positive center pin

Pin# Pin name Function Notes
1 VIN Power supply Nominal: +12V
2 , 3 DGND Ground -

Boot mode selection - S5

S5 is a dip-switch for the boot mode selection. The following table reports the available options and the related configurations:

S5.1 S5.2 S5.3 S5.4 S5.5 S5.6 S5.7 S5.8
SPI-NOR OFF ON OFF ON ON ON ON OFF
SD-card OFF ON OFF ON ON OFF ON OFF
NAND OFF ON OFF ON ON OFF ON ON
JTAG OFF ON OFF ON ON ON ON ON

WatchDog Settings - S1, S2 and S3

S1, S2 and S3 are dip-switch to override the default startup delay and timeout of the BORA Xpress module watchdog. For more details please refer to this page.

S1.1 S1.2
WD_SET0 SOM default OFF OFF
WD_SET0 = '1' ON OFF
WD_SET0 = '0' OFF ON
S2.1 S2.2
WD_SET1 SOM default OFF OFF
WD_SET1 = '1' ON OFF
WD_SET1 = '0' OFF ON
S3.1 S3.2
WD_SET2 SOM default OFF OFF
WD_SET2 = '1' ON OFF
WD_SET2 = '0' OFF ON

Ethernet port #0 (ETH0) - J8

J8 is a RJ45 Gigabit Ethernet connector - incorporating magnetics - connected to the Bora Xpress integrated ethernet controller and PHY.

Pin# Pin name Function Notes
1 CT_TRD3 center tap TRD3 -
2 ETH_TXRX2_M - -
3 ETH_TXRX2_P - -
4 ETH_TXRX1_P - -
5 ETH_TXRX1_M - -
6 CT_TRD2 center tap TRD2 -
7 CT_TRD4 center tap TRD4 -
8 ETH_TXRX3_P - -
9 ETH_TXRX3_M - -
10 ETH_TXRX0_M - -
11 ETH_TXRX0_P - -
12 CT_TRD1 center tap TRD1 -
13 3.3V_ETH0_LED2 - -
15 3.3V_ETH0_LED1 - -
14, 16 +3.3V - -

Ethernet port #1 (ETH1) - J9

J9 is a RJ45 Gigabit Ethernet connector - incorporating magnetics - connected to Micrel KSZ9031 PHY (Gigabit Ethernet Transceiver). This, in turn, is connected to PL's bank 13 via RGMII interface. This is an example of EMIO routing showing how to route PS's MAC signals via PL subsystem.

Pin# Pin name Function Notes
1 CT_TRD3 center tap TRD3 -
2 ETH1_TXRX2_M - -
3 ETH1_TXRX2_P - -
4 ETH1_TXRX1_P - -
5 ETH1_TXRX1_M - -
6 CT_TRD2 center tap TRD2 -
7 CT_TRD4 center tap TRD4 -
8 ETH1_TXRX3_P - -
9 ETH1_TXRX3_M - -
10 ETH1_TXRX0_M - -
11 ETH1_TXRX0_P - -
12 CT_TRD1 center tap TRD1 -
13 3.3V_ETH1_LED2 - -
15 3.3V_ETH1_LED1 - -
14, 16 +3.3V - -

BANK's Power GOOD signals - J28

J28 is a 10-pin 5x2x2.54 pitch vertical header used for accessing to the POWER GOOD signals. The following table reports the pinout of the connector:

Pin# Pin name Function Notes
1 , 3 3.3V_SOM - -
2 SOM_PGOOD - -
4 1.8V_POWER_GOOD - -
5 3.3V_SBY - -
6 VADJ_PG - -
7 BANK13_PGOOD - -
8 BANK35_PGOOD - -
9 1V2_ETH1_PG - -
10 DGND - -

JTAG

JTAG port is available as two different mechanical connectors:

  • 2.00mm-pitch 7x2 header (Xilinx standard)
  • 2.54mm-pitch 10x2 header (ARM standard): http://www2.lauterbach.com/pdf/arm_app_jtag.pdf
  • This port is connected to Zynq's native JTAG signals. Please note that Zynq's internal JTAG chain supports differents configurations, depending on bootstrap signals. In case split mode is selected, CPU JTAG can be routed separately via PL. For more details please refer to Zynq Technical Reference Manual.
  • JTAG on BORA Xpress EVB is also connected to the FMC connector. For more details on how to connect JTAG on a custom FMC card please refer to ANSI/VITA FPGA Mezzanine Card (FMC) Standard.

JTAG XILINX - J13

J13 is a 14-pin 7x2x2 pitch vertical header. The following table reports the pinout of the connector:

Pin# Pin name Function Notes
1, 3, 5, 7, 9, 11, 13 DGND - -
2 3.3V - -
4 JTAG_TMS - -
6 JTAG_TCK - -
8 JTAG_TDO - -
10 JTAG_TDI - -
12 N.C. - -
14 JTAG_TRSTn - -

JTAG ARM - J18

J18 is a 20-pin 10x2x2.54 pitch vertical header. The following table reports the pinout of the connector:

Pin# Pin name Function Notes
1 3.3V - -
2 3.3V - -
3, 11, 17, 19 N.C. - -
4, 6 ,8 ,10 ,12,
14, 16, 18, 20
DGND - -
5 JTAG_TDI - -
7 JTAG_TMS - -
9 JTAG_TCK - -
13 JTAG_TDO - -
15 JTAG_TRSTn - -

UART1 - J17

J17 is a standard DB9 connector that routes the signals coming from the RS232 transceiver that is connected to the PS MIO signals of the UART1 port.

Pin# Pin name Function Notes
1, 6, 4, 9 N.C. N.C.
2 UART_EXT_RX Receive line Connected to protection diode array
3 UART_EXT_TX Transmit line Connected to protection diode array
5 DGND Ground
7, 8 N.C. N.C. Connected to protection diode array

USB OTG - J19

J19 is a standard USB MICRO AB connector. It is connected to the BORA Xpress USB 2.0 OTG peripheral. The following table reports the pinout of the connector:

Pin# Pin name Function Notes
1 USB_OTG_VBUS - -
2 USBM1 - -
3 USBP1 - -
4 OTG_ID - -
5 USB_OTG_DGND - -
6, 7, 8, 9 USB_OTG_SHIELD - -

MicroSD - J21

J21 is a microSD memory card connector. It is connected to the BORA Xpress SOM through a bidirectional 1.8V/3.3V voltage-level translator mounted on the BORA Xpress EVB. Level shifter is required because MIO signals are 1.8V. The following table reports the pinout of the connector:

Pin# Pin name Function Notes
1 PS_SD0_DAT2 - -
2 PS_SD0_DAT3 - -
3 PS_SD0_CMD - -
4 3.3V - -
5 PS_SD0_CLK - -
6, 9, 10, 11, 12 DGND - -
7 PS_SD0_DAT0 - -
8 PS_SD0_DAT1 - -
3.3V - Pull up to 3.3V with 10K Ohm -

DWM (DAVE Wifi/BT module) socket - J23

J23 is a 52991-0308 connector type (30 pins, vertical, 0.50mm picth). This socket connects the DWM Wireless Module (optional) to the BORA Xpress EVB. The following table reports the pinout of the connector:

Pin# Pin name Function Notes
1, 2 5V - -
3, 4 3.3V - -
5, 6,
9, 10,
19
DGND - -
7 DWM_SD_CMD - -
8 DWM_SD_CLK - -
11 DWM_SD_DAT0 - -
12, 14,
16, 18,
20, 22
N.C. - -
13 DWM_SD_DAT1 - -
15 DWM_SD_DAT2 - -
17 DWM_SD_DAT3 - -
21 DWM_UART_RX - -
23 DWM_UART_CTS - -
24 DWM_BT_F5 - -
25 DWM_UART_TX - -
26 DWM_BT_F2 - -
27 DWM_UART_RTS - -
28 DWM_WIFI_IRQ - -
29 DWM_BT_EN - -
30 DWM_WIFI_EN - -

CAN - J24

J24 is a 10-pin 5x2x2.54mm pitch vertical header directly connected to BORA Xpress SoM's transceiver for the CAN interface. This 2.5mm-pitch header is compatible with commonly available IDC-10/DB9 flat cables. The following table reports the pinout of the connector:

Pin# Pin name Function Notes
1, 6,
7, 8,
9, 10
N.C. - -
2, 5 CAN_SHIELD - -
3 CAN_L - -
4 CAN_H - -

Touch screen - J25

J25 is a ZIF 4-pin 1.0mm pitch connector that connects the touchscreen drive lines to the touch screen controller on the BoORA Xpress EVB. The following table reports the pinout of the connector:

Pin# Pin name Function Notes
1 TSC_YP - -
2 TSC_XP - -
3 TSC_YM - -
4 TSC_XM - -

LVDS - J26

J26 is a vertical double row straight 20-pin 1.25mm pitch header. This interface shows how to implement a differential connection to an LCD screen. As known, Zynq does not implement an LCD controller, however this can be integrated in FPGA fabric as shown by this example: https://wiki.analog.com/resources/tools-software/linux-drivers/platforms/zynq. The following table reports the pinout of the connector:

Pin# Pin name Function Notes
1, 2 3.3V_LCD - -
3, 4, 7, 10,
13, 16, 19
DGND Ground -
5 LCD_LVDS_D0- - -
6 LCD_LVDS_D0+ - -
8 LCD_LVDS_D1- - -
9 LCD_LVDS_D1+ - -
11 LCD_LVDS_D2- - -
12 LCD_LVDS_D2+ - -
15 LCD_LVDS_CLK+ - -
17 LCD_P17 - -
18 LCD_P18 - -
20 LCD_P20 - -
21,22 DGND Ground Shield

FPGA Mezzanine Card (FMC) Connector - J27

J27 is a 400 pins ANSI/VITA 57.1-2008 FPGA Mezzanine Card Connector that allows to connect to standard I/O mezzanine cards.

Please note that BoraXpress EVB FMC Connector is:

  • fully compliant to FMC LPC
  • partially compliant to FMC HPC because HPC side is not fully populated.

The following tables detail how BORA Xpress signals have been routed to FMC connector. At this link a spreadsheet providing the same information is available for download.

For more information about I/O voltage of single-ended signals available on FMC connector, please refer to this section.

HPC Row A

Pin# Pin name Function Notes
A1 DGND GND
A2 MGTxRXP1 DP1_M2C_P
A3 MGTxRXN1 DP1_M2C_N
A4 DGND GND
A5 DGND GND
A6 MGTxRXP2 DP2_M2C_P
A7 MGTxRXN2 DP2_M2C_N
A8 DGND GND
A9 DGND GND
A10 MGTxRXP3 DP3_M2C_P
A11 MGTxRXN3 DP3_M2C_N
A12 DGND GND
A13 DGND GND
A14 not connected DP4_M2C_P
A15 not connected DP4_M2C_N
A16 DGND GND
A17 DGND GND
A18 not connected DP5_M2C_P
A19 not connected DP5_M2C_N
A20 DGND GND
A21 DGND GND
A22 MGTxTXP1 DP1_C2M_P
A23 MGTxTXN1 DP1_C2M_N
A24 DGND GND
A25 DGND GND
A26 MGTxTXP2 DP2_C2M_P
A27 MGTxTXN2 DP2_C2M_N
A28 DGND GND
A29 DGND GND
A30 MGTxTXP3 DP3_C2M_P
A31 MGTxTXN3 DP3_C2M_N
A32 DGND GND
A33 DGND GND
A34 not connected DP4_C2M_P
A35 not connected DP4_C2M_N
A36 DGND GND
A37 DGND GND
A38 not connected DP5_C2M_P
A39 not connected DP5_C2M_N
A40 DGND GND

HPC Row B

Pin# Pin name Function Notes
B1 RSVD RES1
B2 DGND GND
B3 DGND GND
B4 not connected DP9_M2C_P
B5 not connected DP9_M2C_N
B6 DGND GND
B7 DGND GND
B8 not connected DP8_M2C_P
B9 not connected DP8_M2C_N
B10 DGND GND
B11 DGND GND
B12 not connected DP7_M2C_P
B13 not connected DP7_M2C_N
B14 DGND GND
B15 DGND GND
B16 not connected DP6_M2C_P
B17 not connected DP6_M2C_N
B18 DGND GND
B19 DGND GND
B20 MGTREFCLK1P GBTCLK1_M2C_P
B21 MGTREFCLK1N GBTCLK1_M2C_N
B22 DGND GND
B23 DGND GND
B24 not connected DP9_C2M_P
B25 not connected DP9_C2M_N
B26 DGND GND
B27 DGND GND
B28 not connected DP8_C2M_P
B29 not connected DP8_C2M_N
B30 DGND GND
B31 DGND GND
B32 not connected DP7_C2M_P
B33 not connected DP7_C2M_N
B34 DGND GND
B35 DGND GND
B36 not connected DP6_C2M_P
B37 not connected DP6_C2M_N
B38 DGND GND
B39 DGND GND
B40 RSVD RES0

LPC Row C

Pin# Pin name Function Notes
C1 DGND GND
C2 MGTxTXP0 DP0_C2M_P
C3 MGTxTXN0 DP0_C2M_N
C4 DGND GND
C5 DGND GND
C6 MGTxRXP0 DP0_M2C_P
C7 MGTxRXN0 DP0_M2C_N
C8 DGND GND
C9 DGND GND
C10 IO_L23P_T3_34 LA06_P
C11 IO_L23N_T3_34 LA06_N
C12 DGND GND
C13 DGND GND
C14 IO_L2P_T0_34 LA10_P
C15 IO_L2N_T0_34 LA10_N
C16 DGND GND
C17 DGND GND
C18 IO_L1P_T0_34 LA14_P
C19 IO_L1N_T0_34 LA14_N
C20 DGND GND
C21 DGND GND
C22 IO_L16P_T2_34 LA18_P_CC
C23 IO_L16N_T2_34 LA18_N_CC
C24 DGND GND
C25 DGND GND
C26 IO_L6P_T0_35 LA27_P
C27 IO_L6N_T0_VREF_35 LA27_N
C28 DGND GND
C29 DGND GND
C30 I2C0_SCL SCL
C31 I2C0_SDA SDA
C32 DGND GND
C33 DGND GND
C34 GA0 GA0
C35 FMC_12P0V 12P0V
C36 DGND GND
C37 FMC_12P0V 12P0V
C38 DGND GND
C39 FMC_3P3V 3P3V
C40 DGND GND

LPC Row D

Pin# Pin name Function Notes
D1 IO_25_VRP_34 PG_C2M
D2 DGND GND
D3 DGND GND
D4 MGTREFCLK0P GBTCLK0_M2C_P
D5 MGTREFCLK0N GBTCLK0_M2C_N
D6 DGND GND
D7 DGND GND
D8 IO_L14P_T2_SRCC_34 LA01_P_CC
D9 IO_L14N_T2_SRCC_34 LA01_N_CC
D10 DGND GND
D11 IO_L9P_T1_DQS_34 LA05_P
D12 IO_L9N_T1_DQS_34 LA05_N
D13 DGND GND
D14 IO_L6P_T0_34 LA09_P
D15 IO_L6N_T0_VREF_34 LA09_N
D16 DGND GND
D17 IO_L20P_T3_34 LA13_P
D18 IO_L20N_T3_34 LA13_N
D19 DGND GND
D20 IO_L15P_T2_DQS_34 LA17_P_CC
D21 IO_L15N_T2_DQS_34 LA17_N_CC
D22 DGND GND
D23 IO_L2P_T0_AD8P_35 LA23_P
D24 IO_L2N_T0_AD8N_35 LA23_N
D25 DGND GND
D26 IO_L5P_T0_AD9P_35 LA26_P
D27 IO_L5N_T0_AD9N_35 LA26_N
D28 DGND GND
D29 JTAG_TCK TCK
D30 JTAG_TDI TDI
D31 FMC_TDO_ZYNQ_TDI TDO
D32 FMC_3P3VAUX 3P3VAUX
D33 JTAG_TMS TMS
D34 JTAG_TRSTn TRST_L
D35 GA0 GA1
D36 FMC_3P3V 3P3V
D37 DGND GND
D38 FMC_3P3V 3P3V
D39 DGND GND
D40 FMC_3P3V 3P3V

HPC Row E

Pin# Pin name Function Notes
E1 DGND GND
E2 IO_L14P_T2_AD4P_SRCC_35 HA01_P_CC
E3 IO_L14N_T2_AD4N_SRCC_35 HA01_N_CC
E4 DGND GND
E5 DGND GND
E6 IO_L20P_T3_AD6P_35 HA05_P
E7 IO_L20N_T3_AD6N_35 HA05_N
E8 DGND GND
E9 IO_L24P_T3_AD15P_35 HA09_P
E10 IO_L24N_T3_AD15N_35 HA09_N
E11 DGND GND
E12 not connected HA13_P
E13 not connected HA13_N
E14 DGND GND
E15 not connected HA16_P
E16 not connected HA16_N
E17 DGND GND
E18 not connected HA20_P
E19 not connected HA20_N
E20 DGND GND
E21 not connected HB03_P
E22 not connected HB03_N
E23 DGND GND
E24 not connected HB05_P
E25 not connected HB05_N
E26 DGND GND
E27 not connected HB09_P
E28 not connected HB09_N
E29 DGND GND
E30 not connected HB13_P
E31 not connected HB13_N
E32 DGND GND
E33 not connected HB19_P
E34 not connected HB19_N
E35 DGND GND
E36 not connected HB21_P
E37 not connected HB21_N
E38 DGND GND
E39 FMC_VADJ VADJ
E40 DGND GND

HPC Row F

Pin# Pin name Function Notes
F1 IO_0_VRN_35 PG_M2C
F2 DGND GND
F3 DGND GND
F4 IO_L13P_T2_MRCC_35 HA00_P_CC
F5 IO_L13N_T2_MRCC_35 HA00_N_CC
F6 DGND GND
F7 IO_L19P_T3_35 HA04_P
F8 IO_L19N_T3_VREF_35 HA04_N
F9 DGND GND
F10 IO_L23P_T3_35 HA08_P
F11 IO_L23N_T3_35 HA08_N
F12 DGND GND
F13 not connected HA12_P
F14 not connected HA12_N
F15 DGND GND
F16 not connected HA15_P
F17 not connected HA15_N
F18 DGND GND
F19 not connected HA19_P
F20 not connected HA19_N
F21 DGND GND
F22 not connected HB02_P
F23 not connected HB02_N
F24 DGND GND
F25 not connected HB04_P
F26 not connected HB04_N
F27 DGND GND
F28 not connected HB08_P
F29 not connected HB08_N
F30 DGND GND
F31 not connected HB12_P
F32 not connected HB12_N
F33 DGND GND
F34 not connected HB16_P
F35 not connected HB16_N
F36 DGND GND
F37 not connected HB20_P
F38 not connected HB20_N
F39 DGND GND
F40 FMC_VADJ VADJ

LPC Row G

Pin# Pin name Function Notes
G1 DGND GND
G2 IO_L11P_T1_SRCC_34 CLK0_C2M_P
G3 IO_L11N_T1_SRCC_34 CLK0_C2M_N
G4 DGND GND
G5 DGND GND
G6 IO_L13P_T1_MRCC_34 LA00_P_CC
G7 IO_L13N_T1_MRCC_34 LA00_N_CC
G8 DGND GND
G9 IO_L4P_T0_34 LA03_P
G10 IO_L4N_T0_34 LA03_N
G11 DGND GND
G12 IO_L3P_T0_DQS_PUDC_B_34 LA08_P
G13 IO_L3N_T0_DQS_34 LA08_N
G14 DGND GND
G15 IO_L22P_T3_34 LA12_P
G16 IO_L22N_T3_34 LA12_N
G17 DGND GND
G18 IO_L19P_T3_34 LA16_P
G19 IO_L19N_T3_VREF_34 LA16_N
G20 DGND GND
G21 IO_L17P_T2_34 LA20_P
G22 IO_L17N_T2_34 LA20_N
G23 DGND GND
G24 IO_L1P_T0_AD0P_35 LA22_P
G25 IO_L1N_T0_AD0N_35 LA22_N
G26 DGND GND
G27 IO_L4P_T0_35 LA25_P
G28 IO_L4N_T0_35 LA25_N
G29 DGND GND
G30 IO_L8P_T1_AD10P_35 LA29_P
G31 IO_L8N_T1_AD10N_35 LA29_N
G32 DGND GND
G33 IO_L10P_T1_AD11P_35 LA31_P
G34 IO_L10N_T1_AD11N_35 LA31_N
G35 DGND GND
G36 IO_L16P_T2_35 LA33_P
G37 IO_L16N_T2_35 LA33_N
G38 DGND GND
G39 FMC_VADJ VADJ
G40 DGND GND

LPC Row H

Pin# Pin name Function Notes
H1 FMC_VREF_A_M2C VREF_A_M2C
H2 FMC_PRSNT_M2C_L PRSNT_M2C_L
H3 DGND GND
H4 IO_L12P_T1_MRCC_34 CLK0_M2C_P
H5 IO_L12N_T1_MRCC_34 CLK0_M2C_N
H6 DGND GND
H7 IO_L7P_T1_34 LA02_P
H8 IO_L7N_T1_34 LA02_N
H9 DGND GND
H10 IO_L5P_T0_34 LA04_P
H11 IO_L5N_T0_34 LA04_N
H12 DGND GND
H13 IO_L8P_T1_34 LA07_P
H14 IO_L8N_T1_34 LA07_N
H15 DGND GND
H16 IO_L21P_T3_DQS_34 LA11_P
H17 IO_L21N_T3_DQS_34 LA11_N
H18 DGND GND
H19 IO_L18P_T2_34 LA15_P
H20 IO_L18N_T2_34 LA15_N
H21 DGND GND
H22 IO_L24P_T3_34 LA19_P
H23 IO_L24N_T3_34 LA19_N
H24 DGND GND
H25 IO_L10P_T1_34 LA21_P
H26 IO_L10N_T1_34 LA21_N
H27 DGND GND
H28 IO_L3P_T0_DQS_AD1P_35 LA24_P
H29 IO_L3N_T0_DQS_AD1N_35 LA24_N
H30 DGND GND
H31 IO_L7P_T1_AD2P_35 LA28_P
H32 IO_L7N_T1_AD2N_35 LA28_N
H33 DGND GND
H34 IO_L9P_T1_DQS_AD3P_35 LA30_P
H35 IO_L9N_T1_DQS_AD3N_35 LA30_N
H36 DGND GND
H37 IO_L15P_T2_DQS_AD12P_35 LA32_P
H38 IO_L15N_T2_DQS_AD12N_35 LA32_N
H39 DGND GND
H40 FMC_VADJ VADJ

HPC Row J

Pin# Pin name Function Notes
J1 DGND GND
J2 IO_L11P_T1_SRCC_35 CLK1_C2M_P
J3 IO_L11N_T1_SRCC_35 CLK1_C2M_N
J4 DGND GND
J5 DGND GND
J6 IO_L18P_T2_AD13P_35 HA03_P
J7 IO_L18N_T2_AD13N_35 HA03_N
J8 DGND GND
J9 IO_L22P_T3_AD7P_35 HA07_P
J10 IO_L22N_T3_AD7N_35 HA07_N
J11 DGND GND
J12 not connected HA11_P
J13 not connected HA11_N
J14 DGND GND
J15 not connected HA14_P
J16 not connected HA14_N
J17 DGND GND
J18 not connected HA18_P
J19 not connected HA18_N
J20 DGND GND
J21 not connected HA22_P
J22 not connected HA22_N
J23 DGND GND
J24 not connected HB01_P
J25 not connected HB01_N
J26 DGND GND
J27 not connected HB07_P
J28 not connected HB07_N
J29 DGND GND
J30 not connected HB11_P
J31 not connected HB11_N
J32 DGND GND
J33 not connected HB15_P
J34 not connected HB15_N
J35 DGND GND
J36 not connected HB18_P
J37 not connected HB18_N
J38 DGND GND
J39 not connected VIO_B_M2C
J40 DGND GND

HPC Row K

Pin# Pin name Function Notes
K1 not connected VREF_B_M2C
K2 DGND GND
K3 DGND GND
K4 IO_L12P_T1_MRCC_35 CLK1_M2C_P
K5 IO_L12N_T1_MRCC_35 CLK1_M2C_N
K6 DGND GND
K7 IO_L17P_T2_AD5P_35 HA02_P
K8 IO_L17N_T2_AD5N_35 HA02_N
K9 DGND GND
K10 IO_L21P_T3_DQS_AD14P_35 HA06_P
K11 IO_L21N_T3_DQS_AD14N_35 HA06_N
K12 DGND GND
K13 IO_25_VRP_35 HA10_P
K14 not connected HA10_N
K15 DGND GND
K16 not connected HA17_P_CC
K17 not connected HA17_N_CC
K18 DGND GND
K19 not connected HA21_P
K20 not connected HA21_N
K21 DGND GND
K22 not connected HA23_P
K23 not connected HA23_N
K24 DGND GND
K25 not connected HB00_P_CC
K26 not connected HB00_N_CC
K27 DGND GND
K28 not connected HB06_P_CC
K29 not connected HB06_N_CC
K30 DGND GND
K31 not connected HB10_P
K32 not connected HB10_N
K33 DGND GND
K34 not connected HB14_P
K35 not connected HB14_N
K36 DGND GND
K37 not connected HB17_P_CC
K38 not connected HB17_N_CC
K39 DGND GND
K40 not connected VIO_B_M2C

Pin strip connectors

SPI,NAND - JP13

JP13 is a 12-pin 6x2x2.54 pitch vertical header. The following table reports the pinout of the connector:

Pin# Pin name Function Notes
1, 4, 9, 12 DGND Ground -
2 SPI0_CS0n - -
3 ZYNQ_SPI0_SCLK/NAND_IO1 - -
5 ZYNQ_SPI0_DQ0/NAND_ALE - -
6 NAND_CS0/SPI0_CS1 - -
7 ZYNQ_SPI0_DQ2/NAND_IO2 - -
8 ZYNQ_SPI0_DQ1/NAND_WE - -
10 ZYNQ_SPI0_DQ3/NAND_IO0 - -
11 ZYNQ_NAND_RD_B - -

Voltage Monitor - JP15

JP15 is a 16-pin 8x2x2.54 pitch vertical header. The following table reports the pinout of the connector:

Pin# Pin name Function Notes
1 MON_VCCPLL - -
2 MON_3.3V - -
3 MON_XADC_VCC - -
4 MON_1V2_ETH - -
5 MON_FPGA_VDDIO_BANK35 - -
6 MON_VDDQ_1V5 - -
7 MON_FPGA_VDDIO_BANK34 - -
8 MON_1.8V - -
9 MON_FPGA_VDDIO_BANK13 - -
10 MON_1.0V - -
11 MON_1.8V_IO - -
12 MON_MGTAVCC - -
13 MON_MGTAVTT - -
14 MON_MGTAVCCAUX - -
15, 16 DGND Ground -


Ethernet GPIO - JP18

JP18 is a 16-pin 8x2x2.54 pitch vertical header. The following table reports the pinout of the connector:

Pin# Pin name Function Notes
1, 2, 5,
6, 16
DGND Ground -
3 CLK125_NDO - -
4 ETH1_CLK125_NDO - -
7 ETH_MDC - -
8 ETH1_MDC - -
9 ETH_MDIO - -
10 ETH1_MDIO - -
11 ETH_INTn - -
12 ETH1_INTn - -
13 PS_MIO51_501 - -
14 ETH1_RESETn - -
15 PS_MIO50_501 - -


SPI,NAND - JP19

JP19 is a 12-pin 6x2x2.54 pitch vertical header. The following table reports the pinout of the connector:

Pin# Pin name Function Notes
1, 11, 12 DGND Ground -
2 NAND_BUSY - -
3 ZYNQ_NAND_CLE - -
4 NAND_IO3 - -
5 NAND_IO4 - -
6 NAND_IO5 - -
7 NAND_IO6 - -
8 NAND_IO7 - -
9 CONN_SPI_RSTn - -
10 MEM_WPn - -

FPGA, WatchDog, RTC, RST - JP22

JP22 is a 16-pin 8x2x2.54 pitch vertical header. The following table reports the pinout of the connector:

Pin# Pin name Function Notes
1 FPGA_INIT_B - -
2 RTC_32KHZ - -
3 FPGA_PROGRAM_B - -
4 RTC_RST - -
5 FPGA_DONE - -
6 RTC_INT/SQW - -
7, 8 DGND Ground -
9 WD_SET0 - -
10 SYS_RSTn - -
11 WD_SET1 - -
12 PORSTn - -
13 WD_SET2 - -
14 MRSTn - -
15 PS_MIO15_500 - -
16 CB_PWR_GOOD - -

AUX PINs - JP29

JP29 is a 16-pin 8x2x2.54 pitch vertical header. The following table reports the pinout of the connector:

Pin# Pin name Function Notes
1 EVB_1.8V - -
2 3.3V - -
3 PS_I2C0_DAT - -
4 I2C0_SDA - -
5 PS_I2C0_CK - -
6 I2C0_SCL - -
7, 8,
13
DGND Ground -
9 EXT_VMON2_V1 - Mount option
10, 16 XADC_AGND Analog Ground -
11 EXT_VMON2_V2 - Mount option
12 XADC_VN_R - -
14 XADC_VP_R - -
15 INA_ALERT - -

Please note that:

  • Three devices are connected to I2C0 bus (this is level shifted from 1.8V to 3.3V):
    • Silicon Labs Si571 programmable clock generator: this clock si connected to PL to allow the user to easily experiment his/her own peripherals and IPs on FPGA
    • resistive touch screen controller for LCD screen
    • consumption monitor: this is connected to shunt resistor put in series on BORA power rail, allowing to measure SoM consumption

ADC - JP30, JP31, JP32

JP30, JP31, JP32 are 16-pin 8x2x2.54 pitch vertical header. The following tables reports the pinout of the connectors:

JP30:

Pin# Pin name Function Notes
2 FPGA_BANK35_AD0N AD0_N Mount option
3 FPGA_BANK35_AD1P AD1_P Mount option
4 FPGA_BANK35_AD0P AD0_P Mount option
5 FPGA_BANK35_AD1N AD1_N Mount option
8 FPGA_BANK35_AD2P AD2_P Mount option
9 FPGA_BANK35_AD3P AD3_P Mount option
10 FPGA_BANK35_AD2N AD2_N Mount option
11 FPGA_BANK35_AD3N AD3_N Mount option
14 FPGA_BANK35_AD4P AD4_P Mount option
15 FPGA_BANK35_AD5P AD5_P Mount option
16 FPGA_BANK35_AD4N AD4_N Mount option
1, 6, 7,
12, 13
DGND - -

JP31:

Pin# Pin name Function Notes
1 FPGA_BANK35_AD5N AD5_N Mount option
4 FPGA_BANK35_AD6P AD6_P Mount option
5 FPGA_BANK35_AD7P AD7_P Mount option
6 FPGA_BANK35_AD6N AD6_N Mount option
7 FPGA_BANK35_AD7N AD7_N Mount option
10 FPGA_BANK35_AD8P AD8_P Mount option
11 FPGA_BANK35_AD9P AD9_P Mount option
12 FPGA_BANK35_AD8N AD8_N Mount option
13 FPGA_BANK35_AD9N AD9_N Mount option
16 FPGA_BANK35_AD10P AD10_P Mount option
2, 3, 8,
9, 14, 15
DGND - -

JP32:

Pin# Pin name Function Notes
1 FPGA_BANK35_AD11P AD11_P Mount option
2 FPGA_BANK35_AD10N AD10_N Mount option
3 FPGA_BANK35_AD11N AD11_N Mount option
6 FPGA_BANK35_AD12P AD12_P Mount option
7 FPGA_BANK35_AD13P AD13_P Mount option
8 FPGA_BANK35_AD12N AD12_N Mount option
9 FPGA_BANK35_AD13N AD13_N Mount option
12 FPGA_BANK35_AD14P AD14_P Mount option
13 FPGA_BANK35_AD15P AD15_P Mount option
14 FPGA_BANK35_AD14N AD14_N Mount option
15 FPGA_BANK35_AD15N AD15_N Mount option
4, 5, 10,
11, 16
DGND - -

Digilent Pmod™ Compatible headers

Please note that:

Digilent Pmod™ Compatible - JP17

JP17 is a 12-pin 6x2x2.54 pitch vertical header. The following table reports the pinout of the connector:

Pin# Pin name Function Notes
1 PMOD_A0 -
2 PMOD_A4 -
3 PMOD_A1 -
4 PMOD_A5 -
5 PMOD_A2 -
6 PMOD_A6 -
7 PMOD_A3 -
8 PMOD_A7 -
9, 10 DGND Ground -
11, 12 3.3V -


Digilent Pmod™ Compatible - JP23

JP23 is a 12-pin 6x2x2.54 pitch vertical header. The following table reports the pinout of the connector:

Pin# Pin name Function Notes
1 PMOD_B0 - -
2 PMOD_B4 - -
3 PMOD_B1 - -
4 PMOD_B5 - -
5 PMOD_B2 - -
6 PMOD_B6 - -
7 PMOD_B3 - -
8 PMOD_B7 - -
9, 10 DGND Ground -
11, 12 3.3V - -

JP27, JP27 and JP28

These connectors allow to select power voltage of PL's I/O banks. For more details please refer to this section.

PL's I/O voltage selections

PL's I/O banks voltage can be selected via configuration jumpers. It is worth remembering that:

  • each bank must be powered even if none of its I/Os is used
  • voltage selection must be done before powering up the board.

The following table recaps the characteristics of the PL's I/O banks, in terms of allowable power supplies.

Zynq p/n Bank #34 Bank #13 Bank #35
Type [1] I/O voltage setting Type [1] I/O voltage setting Type [1] I/O voltage setting
7015

(CLG485 package)

HR

(1.2 - 3.3V)

User defined HR

(1.2 - 3.3V)

User defined HR

(1.2 - 3.3V)

User defined
7030

(SBG485 package)

HP

(1.2 - 1.8V)

User defined HR

(1.2 - 3.3V)

User defined HP

(1.2 - 1.8V)

User defined

[1]

  • HR = High Range
  • HP = High Performance

BoraXEVB voltage selection jumpers

BoraXEVB provides several configuration jumpers that allow to easily select the voltages used for PL's I/O banks. The following tables lists some of the allowed combinations used to select the most common voltage values. There are other combination available. However, some of them are not allowed and may cause permanent hardware damages to the Zynq part.

Since characteristics of PL's I/O banks differ between Zynq 7015 and 7030 parts, the valid combinations are not the same for all of the BoraX models. Please refer to the following sections for more details.

Even if PL's banks are independent, default configuration of BoraXEVB is such that

  • bank 34 and bank 35 have the same supply voltage
  • this voltage is selected via JP28.

This configuration is in accordance with default routing of signals used for FMC connector.

Examples of valid combinations for Zynq 7030-based SOMs (default option for BXELK)

Bank #13 (HR)
Nominal voltage [V] JP25.1-2 JP25.3-4 JP25.5-6 JP25.7-8 JP25.9-10 JP25.11-12
1.2 open open closed closed closed open
1.5 open closed open closed open open
1.8 open closed closed open closed open
2.5 closed open closed open open open
3.3 closed closed closed open open open


Bank #35 (HP)
Nominal voltage [V] JP27.1-2 JP27.3-4 JP27.5-6 JP27.7-8 JP27.9-10 JP27.11-12
1.2 open open closed closed closed open
1.5 open closed open closed open open
1.8 open closed closed open closed open


Bank #34 (HP)
Nominal voltage [V] JP28.1-2 JP28.3-4 JP28.5-6 JP28.7-8 JP28.9-10 JP28.11-12
1.2 open open open open closed open
1.5 open open open closed open open
1.8 open open closed open open open

Examples of valid combinations for Zynq 7015-based SOMs

Bank #13 (HR)
Nominal voltage [V] JP25.1-2 JP25.3-4 JP25.5-6 JP25.7-8 JP25.9-10 JP25.11-12
1.2 open open closed closed closed open
1.5 open closed open closed open open
1.8 open closed closed open closed open
2.5 closed open closed open open open
3.3 closed closed closed open open open


Bank #35 (HR)
Nominal voltage [V] JP27.1-2 JP27.3-4 JP27.5-6 JP27.7-8 JP27.9-10 JP27.11-12
1.2 open open closed closed closed open
1.5 open closed open closed open open
1.8 open closed closed open closed open
2.5 closed open closed open open open
3.3 closed closed closed open open open


Bank #34 (HP)
Nominal voltage [V] JP28.1-2 JP28.3-4 JP28.5-6 JP28.7-8 JP28.9-10 JP28.11-12
1.2 open open open open closed open
1.5 open open open closed open open
1.8 open open closed open open open
2.5 open closed open open open open
3.3 closed open open open open open

Advanced information about voltage selection connectors

Bank 13 VDDIO selection connector (JP25)

JP25 is a 12-pin 6x2x2.54 pitch vertical header used for the selection - through jumpers - of the bank supply voltages. The following table reports the pinout of the connector:

Pin# Pin name Function Notes
2 LDO_B13_1V6 adds +1.6V to VDDIO_BANK13 -
4 LDO_B13_800mV adds +800mV to VDDIO_BANK13 -
6 LDO_B13_400mV adds +400mV to VDDIO_BANK13 -
8 LDO_B13_200mV adds +200mV to VDDIO_BANK13 -
10 LDO_B13_100mV adds +100mV to VDDIO_BANK13 -
12 LDO_B13_50mV adds +50mV to VDDIO_BANK13 -
1, 3, 5, 7, 9, 11 DGND - -

The jumper configurations are:

  1. No jumpers installed -> DC output for VDDIO_BANK13 is 500mV
  2. Jumper on 1-2 -> adds 1.6V to VDDIO_BANK13 above the default 500mV
  3. Jumper on 3-4 -> adds 800mV to VDDIO_BANK13 above the default 500mV
  4. Jumper on 5-6 -> adds 400mV to VDDIO_BANK13 above the default 500mV
  5. Jumper on 7-8 -> adds 200mV to VDDIO_BANK13 above the default 500mV
  6. Jumper on 9-10 -> adds 100mV to VDDIO_BANK13 above the default 500mV
  7. Jumper on 11-12 -> adds 50mV to VDDIO_BANK13 above the default 500mV

The default configuration is VDDIO_BANK13 @ 1.8V (500mV + 800mV + 400mV + 100mV):

  1. Jumper on 3-4 -> adds 800mV to VDDIO_BANK13 above the default 500mV
  2. Jumper on 5-6 -> adds 400mV to VDDIO_BANK13
  3. Jumper on 9-10 -> adds 100mV to VDDIO_BANK13
Bank 35 VDDIO selection connector (JP27)

JP27 is a 12-pin 6x2x2.54 pitch vertical header used for the selection - through jumpers - of the bank supply voltages. The following table reports the pinout of the connector:

Pin# Pin name Function Notes
2 LDO_B35_1V6 adds +1.6V to VDDIO_BANK35 -
4 LDO_B35_800mV adds +800mV to VDDIO_BANK35 -
6 LDO_B35_400mV adds +400mV to VDDIO_BANK35 -
8 LDO_B35_200mV adds +200mV to VDDIO_BANK35 -
10 LDO_B35_100mV adds +100mV to VDDIO_BANK35 -
12 LDO_B35_50mV adds +50mV to VDDIO_BANK35 -
1, 3, 5, 7, 9, 11 DGND - -

The jumper configurations are:

  1. No jumpers installed -> DC output for VDDIO_BANK35 is 500mV
  2. Jumper on 1-2 -> adds 1.6V to VDDIO_BANK35 above the default 500mV
  3. Jumper on 3-4 -> adds 800mV to VDDIO_BANK35 above the default 500mV
  4. Jumper on 5-6 -> adds 400mV to VDDIO_BANK35 above the default 500mV
  5. Jumper on 7-8 -> adds 200mV to VDDIO_BANK35 above the default 500mV
  6. Jumper on 9-10 -> adds 100mV to VDDIO_BANK35 above the default 500mV
  7. Jumper on 11-12 -> adds 50mV to VDDIO_BANK35 above the default 500mV

The DEFAULT configuration is VDDIO_BANK35 @ 1.8V (500mV + 800mV + 400mV + 100mV):

  1. Jumper on 3-4 -> adds 800mV to VDDIO_BANK35 above the default 500mV
  2. Jumper on 5-6 -> adds 400mV to VDDIO_BANK35
  3. Jumper on 9-10 -> adds 100mV to VDDIO_BANK35

Please note that by default VDDIO_BANK35 is supplied by VADJ Regulator.

Bank 34 and VADJ VDDIO selection connector (JP28)

JP28 is a 12-pin 6x2x2.54 pitch vertical header used for the selection - through jumpers - of the bank supply voltages. The following table reports the pinout of the connector:

Pin# Pin name Function Notes
2 VADJ_FB (22K) selects 3.3V VADJ -
4 VADJ_FB (30K9) selects 2.5V VADJ -
6 VADJ_FB (51K1) selects 1.8V VADJ -
8 VADJ_FB (68K) selects 1.5V VADJ -
10 VADJ_FB (100K) selects 1.2V VADJ -
12 RFU Reserved -
1, 3, 5, 7, 9, 11 DGND - -

The jumper configurations are:

  1. Jumper on 1-2 -> supply VADJ with 3.3V
  2. Jumper on 3-4 -> supply VADJ with 2.5V
  3. Jumper on 5-6 -> supply VADJ with 1.8V
  4. Jumper on 7-8 -> supply VADJ with 1.5V
  5. Jumper on 9-10 -> supply VADJ with 1.2V

The default configuration is:

  1. Jumper on 5-6 -> supply VADJ with 1.8V

Schematics

BOM

Layout

Mechanical